Experimental Treatment Of Androgenic Alopecia - Reishi Mushroom Weight Loss
The management of hair loss, also known as management of alopecia or management of baldness, may include medications, surgery, and fashion accessories. Some types may be treatable with certain dietary supplements.
Medication
Treatments for the various forms of hair loss have on moderate success. Three medications have evidence to support their use in male pattern hair loss: finasteride, dutasteride and minoxidil. They typically work better to prevent further hair loss than to regrow lost hair.
They may be used together when hair loss is progressive or further regrowth is desired after 12 months. Other medications include ketoconazole, and in female androgenic alopecia spironolactone and flutamide. Combinations of finasteride, minoxidil and ketoconazole are more effective than individual use.
Finasteride
Finasteride is used to treat male pattern hair loss. Treatment provides about 30% improvement in hair loss after six months of treatment, and effectiveness only persists as long as the drug is taken. There is no good evidence for its use in women.
It may cause gynecomastia, erectile dysfunction and depression.
Dutasteride
Dutasteride is used off label for male pattern hair loss.
Minoxidil
Minoxidil, applied topically, is widely used for the treatment of hair loss. It is effective in helping promote hair growth in both males and females with androgenic alopecia. About 40% of men experience hair regrowth after 3-6 months. It is the only topical product that is FDA approved for androgenic hair loss.
Ketoconazole
Ketoconazole may help in women.
Spironolactone
There is tenative support for spironolactone is women. Due to its feminizing side effects and risk of infertility in men it is noto often used in males. It can also cause hypotension, hyperkalemia, and cardiac dysrhythmia. Also, women who are pregnant or trying to become pregnant generally cannot use the medication as it is a teratogen, and can cause ambiguous genitalia in newborns.
Flutamide
There is tentative evidence for flutamide in women; however, it is associated relatively high rates of liver problems. Like spironolactone, it is typically only used in females.
Hair transplantation
Hair transplantation is a surgical technique that moves individual hair follicles from a part of the body called the donor site to bald or balding part of the body known as the recipient site. It is primarily used to treat male pattern baldness. In this condition, grafts containing hair follicles that are genetically resistant to balding are transplanted to bald scalp. It is also used to restore eyelashes, eyebrows, beard hair, chest hair, and pubic hair and to fill in scars caused by accidents or surgery such as face-lifts and previous hair transplants. Hair transplantation differs from skin grafting in that grafts contain almost all of the epidermis and dermis surrounding the hair follicle, and many tiny grafts are transplanted rather than a single strip of skin.
Since hair naturally grows in follicles in groups of 1 to 4 hairs, transplantation takes advantage of these naturally occurring follicular units. This achieves a more natural appearance by matching hair for hair through Follicular unit transplantation (FUT).
Donor hair can be harvested in two different ways. Small grafts of naturally-occurring units of one to four hairs, called follicular units, can be moved to balding areas of the hair restoration. These follicular units are surgically implanted in the scalp in very close proximity to one another and in large numbers. The grafts are obtained in one or both of the two primary methods of surgical extraction, follicular unit transplantation, colloquially referred to as "strip harvesting", or Follicular Unit Extraction (FUE), in which follicles are transplanted individually.
In FUT, a strip of skin containing many follicular units is extracted from the patient and dissected under stereoscopic microscope. Once divided into follicular unit grafts, the surgeon implants each individually into small recipient sites made by incision at the bald scalp. In newer technique, roots are extracted from the donor area and divided into strips for transplantation. The strip, two to three millimeters thick, is isolated and transplanted to bald scalp. After surgery, bandaging is worn for two days for healing.
Radiation induced hair loss
Radiation induces hair loss through damage to hair follicle stem cell progenitors and alteration of keratin expression. Radiation therapy has been associated with increased mucin production in hair follicles.
Studies have suggested electromagnetic radiation as a therapeutic growth stimulant in alopecia.
Cosmeses
Certain hair shampoos and ointments visually thicken existing hair, without affecting the growth cycle. There have also been developments in the fashion industry with wig design. The fashion accessory has also been shown to be a source of psychological support for women undergoing chemotherapy, with cancer survivors in one study describing their wig as a "constant companion". Other studies in women have demonstrated a more mixed psychosocial impact of hairpiece use.
Specialized scalp tattoos can mimic the appearance of a short buzzed haircut.
Alternative medicine
Many people use unproven treatments. There; however, is little evidence for vitamins, minerals, or other dietary supplements.
Laser therapy
There is little evidence as of 2008 to support the use of lasers in hair loss. The same applies to special lights. They; however, appears to be safe.
Dietary supplements
Dietary supplements are not typically recommended. There is only one small trial of saw palmetto which shows tentative benefit in those with mild to moderate androgenetic alopecia. There is no evidence for biotin. Evidence for most other produces is also insufficient. There was no good evidence for gingko, aloe vera, ginseng, bergamot, or hibiscus as of 2011.
ArrayMechanism
Several lines of evidence support the dermal papilla of the hair follicle as the androgenic target for hair loss prevention and reversal. Type 1 and 2 5? reductase enzymes are present at pilosebaceous units in papillae of individual hair follicles. They catalyze formation of the androgens testosterone and DHT, which in turn regulate hair growth. Androgens have different effects at different follicles: they stimulate IGF-1 at facial hair, causing hair regrowth, but stimulate TGF ?1, TGF ?2, dickkopf1 and IL-6 at the scalp, causing hair follicle miniaturization.
Female androgenic alopecia is characterized by diffuse crown thinning without hairline recession, and like its male counterpart rarely leads to total hair loss. Finasteride and minoxidil are usually first line therapy for its treatment. Other options include topical or systemic spironolactone or flutamide, although they have a high incidence of feminizing side effects and are better tolerated in female androgenic hair loss.
More advanced cases may be resistant or unresponsive to medical therapy, however, and require hair transplantation. Naturally-occurring units of one to four hairs, called follicular units, are excised and moved to areas of hair restoration. These follicular units are surgically implanted in the scalp in close proximity and in large numbers. The grafts are obtained from either Follicular Unit Transplantation (FUT) - colloquially referred to as "strip harvesting" - or Follicular Unit Extraction (FUE). In the former, a strip of skin with follicular units is extracted and dissected into individual follicular unit grafts. The surgeon then implants the grafts into small incisions, called recipient sites. Specialized scalp tattoos can also mimic the appearance of a short buzzed haircut. Androgenic alopecia also occurs in females, and more often presents as diffuse thinning without hairline recession. Like its male counterpart, the condition rarely leads to total hair loss. Treatment options are similar to those for men, although topical or systemic estrogen is used more often.
ArrayResearch
Bimatoprost and latanoprost
Latanoprost and bimatoprost are specific PGF2a analogues applied topically, and have been found to lengthen eyelashes, darken hair pigmentation and elongate hair. Bimatoprost is available as treatment for eyelash growth. Latanoprost has shown ability to promote scalp hair density and pigmentation, and is theorized to function at the dermal papilla. A study found latanoprost ineffective on eyelashes in a patient with alopecia areata. It has also been found ineffective in treatment of eyebrow hair loss.
Hormones
Estrogens are indirect anti-androgens, and can be used to treat androgenetic hair loss in females with oral contraceptives. Systemic estrogen increases SHBG, which binds androgens, including testosterone and DHT, in turn reducing their bioavailability. Topical formulations are available in Europe. Hair follicles have estrogen receptors and it is theorized topical compounds act on them directly to promote hair growth and antagonize androgen action. Large clinical studies showing effectiveness are absent. Topical treatment is also usually unavailable in North America.
There is tentative evidence for cyproterone acetate in women.
IGF-1
In December 2012, topical application of IGF-1 in a liposomal vehicle led to thicker and more rapid hair growth in transgenic mice with androgenic alopecia. The study did not show measurable systemic levels or hematopoietic side effects, suggesting potential for use in humans. Low energy radiofrequency irradiation induces IGF-1 in cultured human dermal papilla cells. Adenosine stimulates dermal papillae in vitro to induce IGF-1, along with fibroblast growth factors FGF7, FGF-2 and VEGF. ?-catenin transcription increased, which promotes dermal papillae as well. Dietary isoflavones increase IGF production in scalp dermal papillae in transgenic mice. Topical capsaicin also stimulates IGF at hair follicles via release of vanilloid receptor-1, which in turn leads to more CGRP. Ascorbic acid has led to increased IGF expression in vitro.
Stem cell therapy
Although follicles were previously thought gone in areas of complete baldness, they are more likely dormant, as recent studies have shown the scalp contains the stem cells from which the follicles arose. Research on these follicular stem cells may lead to successes in treating baldness through hair multiplication (HM), also known as hair cloning.
One of the groups developing hair multiplication is Aderans Research Institute (ARI), a Japanese owned company in the United States. In 2008, Intercytex announced results of a Phase II trial to clone hair follicles from the back of the neck, multiply them and then reimplant the cells into the scalp. Initial testing showed at least two thirds of male patients regrew hair. The company estimated treatment would take "a number of years to complete" Phase III trials. After failing to achieve success in their trials, the company discontinued its hair multiplication project in 2010, with intention to sell off its assets and research. Aderans Research Institute Inc. (ARI) then acquired technology from Regenerative Medicine Assets Limited (formerly Intercytex Group plc) and is conducting Phase II clinical trials.
Scientists grew the first artificial hair follicles from stem cells in 2010. Researchers in the study predicted that by 2015 people could grow new hair from their own stem cells, and have it surgically implanted at areas of hair loss. The lead investigator said preparations for clinical trials were "already in motion". In their first human clinical trial, Replicel Life Sciences was able to regenerate 20% percent of hair on stem cell treated areas. Replicel is using dermal sheath cup cells instead of dermal papillae cells for multiplication, in distinction to Aderans. They will be conducting Phase II trials at the end of 2012. In early 2012 a research group demonstrated "functional hair regeneration from adult stem cells" in mouse animal models with the potential for "organ replacement regenerative therapies".
A March 26, 2015 study showed treatment using adipose-derived stem cells, had increased the number of hairs, and may be a future treatment for hair loss. Adipose-derived stem cells secrete various growth factors that promote hair growth.
Genetics
Curis and Procter & Gamble spent one million on development of a topical hedgehog agonist for hair loss. The agent did not meet safety standards, and the program was stopped in 2007. In 2008 researchers at the University of Bonn announced they have found the genetic basis of two distinct forms of inherited hair loss. They found the gene P2RY5 causes a rare, inherited form of hair loss called hypotrichosis simplex. It is the first receptor in humans known to play a role in hair growth. Researchers found that disruption of the gene SOX21 in mice caused cyclical hair loss. Research has suggested SOX21 as a master regulator of hair shaft cuticle differentiation, with its disruption causing cyclical alopecia in mice models. Deletion of SOX21 dramatically affects hair lipids.
ArrayReferences
External links
- "Medical Treatments for Balding in Men", April 1999, American Family Physician (medical journal)
Interesting Informations
Looking products related to this topic, find out at Amazon.com
Source of the article : here
0 komentar :
Your comments